pTrc99A

Ancestors
Derivated

pTadhB

pTadhB-pdc

pYF-1

pTrcDx

pTrpE(S40F)

P1

P2

P3

pTY2

pTY4

pTY9

pTrcA*

pTrcA*H

pTrcA*HpTrcthrA*

pTrcA*HpTrcnadk

pTrcA

pJNU-3

p10499A

pMEE1

pTrc99a-cysB

pTrcpheAfbr

pTrc-ant3

pR1

pR2

pTrc99A-hemA

pZPW72

pTrc99a-mdh

pTrc99a-pncB

pTrc99a-ppc

pTrc99a-pyc

pTrc99a-Bspck


Main features
Ptrc, ColE1 ori

Selection marker:

Ampicillin






Strains harboring plasmid pTrc99A

Escherichia coli S028/pTrc99A

Escherichia coli DH5α/pTrc99A, pLyc184


References

Fithriani, Prayoga Suryadarma & Djumali Mangunwidjaja (2015). Metabolic Engineering of Escherichia coli Cells for Ethanol Production under Aerobic Conditions. Procedia Chemistry.

Hyung Seok Choi, Sang Yup Lee, Tae Yong Kim & Han Min Woo (2010). In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production▿ †. Applied and Environmental Microbiology.

Lin Chen, Minliang Chen, Chengwei Ma & An-Ping Zeng (2018). Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metabolic Engineering.

Du, L., Zhang, Z., Xu, Q., & Chen, N. (2019). New strategy for removing acetic acid as a by-product during L-tryptophan production. Biotechnology & Biotechnological Equipment, 33(1), 1471–1480.

Mi Tang, Xuewei Pan, Tianjin Yang, Jiajia You, Rongshuai Zhu, Taowei Yang, Xian Zhang, Meijuan Xu, Zhiming Rao (2023). Multidimensional engineering of Escherichia coli for efficient synthesis of L-tryptophan. Bioresource Technology. 386.

Byoungjin Kim, Robert Binkley, Hyun Uk Kim & Sang Yup Lee (2018). Metabolic engineering of Escherichia coli for the enhanced production of l‐tyrosine. Biotechnology & Bioengineering.

Mireille Ginesy, Jaroslav Belotserkovsky, Josefine Enman, Leif Isaksson & Ulrika Rova (2015). Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microbial Cell Factories.

Yu Deng, Ning Ma, Kangjia Zhu, Yin Mao, Xuetuan Wei & Yunying Zhao (2018). Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli. Metabolic Engineering.

L Stols & M I Donnelly (1997). Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Applied and Environmental Microbiology.

Han Liu, Yehua Hou, Yu Wang & Zhimin Li (2019). Enhancement of Sulfur Conversion Rate in the Production of l‑Cysteine by Engineered Escherichia coli. Journal of Agricultural & Food Chemistry.

José Luis Báez‐Viveros, Joel Osuna, Georgina Hernández‐Chávez, Xavier Soberón, Francisco Bolívar & Guillermo Gosset (2004). Metabolic engineering and protein directed evolution increase the yield of L‐phenylalanine synthesized from glucose in Escherichia coli. Biotechnology & Bioengineering.

Vo, Toan Minh & Park, Sunghoon. Metabolic engineering of Escherichia coli W3110 for efficient production of homoserine from glucose. Metabolic Engineering. 2022, 73, 104-113.

Pu, W., Chen, J., Zhou, Y. et al. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. Biotechnol Biofuels 16, 31 (2023).

Jiang, Youming; Zheng, Tianwen; Ye, Xiaohan; Xin, Fengxue; Zhang, Wenming; Dong, Weiliang; Ma, Jiangfeng & Jiang, Min. Metabolic engineering of Escherichia coli for l-malate production anaerobically. Microbial Cell Factories. 2020, 19(1).