Escherichia coli W3110
Synonyms
Escherichia coli K12 W3110
Ancestors
Derived strains
- Escherichia coli WL3110
- Escherichia coli KW
- Escherichia coli SDU2
- Escherichia coli FB-01
- Escherichia coli DY330
- Escherichia coli GPT100
- Escherichia coli W3110/pSV-aroFfbr-trpEfbrD
- Escherichia coli W3110/pSV01
- Escherichia coli W3110/pSV02
- Escherichia coli TRP1
- Escherichia coli AE1
- Escherichia coli TRP
- Escherichia coli NT1259
- Escherichia coli JB102
- Escherichia coli W3110-ZDrr
- Escherichia coli BCTRP
- Escherichia coli Trp01
- Escherichia coli T8
- Escherichia coli LY74
- Escherichia coli SZ61
- Escherichia coli TC36
- Escherichia coli W3110G
- Escherichia coli ES
- Escherichia coli UR1
- Escherichia coli HW1
- Escherichia coli W3110 ΔmetJ
- Escherichia coli CWF0
- Escherichia coli CWF1
- Escherichia coli WGS-3
- Escherichia coli WGS-10
- Escherichia coli W3110/p10499A
- Escherichia coli W3110/p104ColiPck
- Escherichia coli W3110/p104ManPck
- Escherichia coli F0201
- Escherichia coli ATCC 25947
- Escherichia coli W3110 trpD9923
- Escherichia coli WygaZH
- Escherichia coli W-H4
Genotype with respect to parental
F-, λ-, rph-1, IN (rrnD, rrnE)
Genotype with respect to wild type
F+ (λ) | λ- | inv(rrnD-rrnE) | F-, λ-, rph-1, IN (rrnD, rrnE)Bars (|) indicate differences between strains.
Production
Metabolites | Heterologous | Production type | Production | Biomass | Carbon source | Time | Scale | Ref. |
---|---|---|---|---|---|---|---|---|
(R)-lactate | Substrate yield | 1.34 mol/mol of substrate | Glucose | 72 h | Batch | [ 137 ] | ||
succinate | Substrate yield | 0.09 mol/mol of substrate | Glucose | 72 h | Batch | [ 137 ] | ||
formate | Substrate yield | 0.43 mol/mol of substrate | Glucose | 72 h | Batch | [ 137 ] | ||
acetate | Substrate yield | 0.4 mol/mol of substrate | Glucose | 72 h | Batch | [ 137 ] | ||
ethanol | Substrate yield | 0.18 mol/mol of substrate | Glucose | 72 h | Batch | [ 137 ] | ||
L-tryptophan | Titer | 0.0 g/L | Glucose | Flask | [ 135 ] | |||
succinate | Titer | 2.43 mM | Glucose | 24 h | Flask | [ 186 ] | ||
(R)-lactate | Titer | 10.62 mM | Glucose | 24 h | Flask | [ 186 ] | ||
formate | Titer | 88.03 mM | Glucose | 24 h | Flask | [ 186 ] | ||
acetate | Titer | 40.1 mM | Glucose | 24 h | Flask | [ 186 ] | ||
ethanol | Titer | 5.77 mM | Glucose | 24 h | Flask | [ 186 ] | ||
uridine | Titer | 0.0 g/L | Glucose | 24 h | Flask | [ 202 ] | ||
L-methionine | Titer | 0.0 g/L | Glucose | Flask | [ 204 ] | |||
pyruvate | Titer | 20.8 mM | 4.13 g/L | Glucose | Batch | [ 185 ] | ||
acetate | Titer | 180.0 mM | 4.13 g/L | Glucose | Batch | [ 185 ] | ||
2-oxoglutarate | Titer | 8.3 mM | 4.13 g/L | Glucose | Batch | [ 185 ] | ||
succinate | Titer | 13.7 mM | 4.13 g/L | Glucose | Batch | [ 185 ] | ||
fumarate | Titer | 0.9 mM | 4.13 g/L | Glucose | Batch | [ 185 ] | ||
pyruvate | Titer | 5.54 g/L | 2.23 g/L | Glucose | Flask | [ 217 ] | ||
(R)-lactate | Titer | 6.34 g/L | 2.23 g/L | Glucose | Flask | [ 217 ] | ||
acetate | Titer | 4.72 g/L | 2.23 g/L | Glucose | Flask | [ 217 ] | ||
formate | Titer | 2.34 g/L | 2.23 g/L | Glucose | Flask | [ 217 ] | ||
ethanol | Titer | 1.43 g/L | 2.23 g/L | Glucose | Flask | [ 217 ] | ||
shikimate | Titer | 1.13 mg/L | 3.42 g/L | Glucose | 27 h | Flask | [ 218 ] | |
acetate | Titer | 5.89 g/L | 3.42 g/L | Glucose | 27 h | Flask | [ 218 ] | |
L-quinate | Titer | 0.0 mg/L | 3.42 g/L | Glucose | 27 h | Flask | [ 218 ] | |
L-homoserine | Titer | 0.0 mM * | 12.28 OD600* | Glucose | Flask | [ 238 ] |
* Inferred from plots using RetroPlot.
References
- Zhi‐Gang Qian, Xiao‐Xia Xia & Sang Yup Lee (2010). Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnology & Bioengineering.
- Huimin Liu, Junhua Kang, Qingsheng Qi & Guanjun Chen (2010). Production of Lactate in Escherichia coli by Redox Regulation Genetically and Physiologically. Applied Biochemistry and Biotechnology.
- Hyung Seok Choi, Sang Yup Lee, Tae Yong Kim & Han Min Woo (2010). In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production▿ †. Applied and Environmental Microbiology.
- Pengfei Gu, Fan Yang, Junhua Kang, Qian Wang & Qingsheng Qi (2012). One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microbial Cell Factories.
- Patrick Daegelen, F. William Studier, Richard E. Lenski, Susan Cure & Jihyun F. Kim (2009). Tracing Ancestors and Relatives of Escherichia coli B, and the Derivation of B Strains REL606 and BL21(DE3). Journal of Molecular Biology.
- Lihong Du, Zhen Zhang, Qingyang Xu & Ning Chen (2019). Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered.
- T. B. Causey, K. T. Shanmugam, L. P. Yomano & L. O. Ingram (2004). Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences of the United States of America.
- Sang Jun Lee, Dong-Yup Lee, Tae Yong Kim, Byung Hun Kim, Jinwon Lee & Sang Yup Lee (2005). Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation. Applied and Environmental Microbiology.
- Kwang Ho Lee, Jin Hwan Park, Tae Yong Kim, Hyun Uk Kim & Sang Yup Lee (2007). Systems metabolic engineering of Escherichia coli for L‐threonine production. Molecular Systems Biology.
- Wang, C., Wu, J., Shi, B. et al. Improving l-serine formation by Escherichia coli by reduced uptake of produced l-serine. Microb Cell Fact 19, 66 (2020).
- Zhi‐Gang Qian, Xiao‐Xia Xia & Sang Yup Lee (2009). Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine. Biotechnology & Bioengineering.
- Heyun Wu, Yanjun Li, Qian Ma, Qiang Li, Zifan Jia, Bo Yang, Qingyang Xu, Xiaoguang Fan, Chenglin Zhang, Ning Chen & Xixian Xie (2018). Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering.
- Heyun Wu, Daoguang Tian, Xiaoguang Fan, Weiming Fan, Yue Zhang, Shuai Jiang, Chenhui Wen, Qian Ma, Ning Chen & Xixian Xie (2020). Highly Efficient Production of l‑Histidine from Glucose by Metabolically Engineered Escherichia coli. ACS Synthetic Biology.
- Jian‐Feng Huang, Zhi‐Qiang Liu, Li‐Qun Jin, Xiao‐Ling Tang, Zhen‐Yang Shen, Huan‐Huan Yin & Yu‐Guo Zheng (2016). Metabolic engineering of Escherichia coli for microbial production of L‐methionine. Biotechnology & Bioengineering.
- Chan Woo Song, Dong In Kim, Sol Choi, Jae Won Jang & Sang Yup Lee (2013). Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnology & Bioengineering.
- Dong-Eun Chang, Heung-Chae Jung, Joon-Shick Rhee & Jae-Gu Pan (1999). Homofermentative Production of d- orl-Lactate in Metabolically Engineered Escherichia coli RR1. Applied and Environmental Microbiology.
- Soo Yun Moon, Soon Ho Hong, Tae Yong Kim & Sang Yup Lee (2008). Metabolic engineering of Escherichia coli for the production of malic acid. Biochemical Engineering Journal.
- Xiaoxiang Dong, Xiulai Chen, Yuanyuan Qian, Yuancai Wang, Li Wang, Weihua Qiao & Liming Liu (2016). Metabolic engineering of Escherichia coli W3110 to produce L‐malate. Biotechnology & Bioengineering.